
AD-AID& 612 DELAWARE UNIV NEWARK DEPT OF COMPUT'ER AND IMFORNATZETC F/0 5/2
PREEUISITES TO DERI VING FORMAL SPECIFICATIONS FRO04 NATURAL LA-CYCC(U)
OCT 81 R M WEISCIEDEL AFOSRS-60-190

UNCLASAFOSR TR-81-0798 NL



L .' --2 8 .

111= I L25

MICROCOPY RESOLUTION lEST CHART
NIATIONAL BUREAU OF SIANDARS ]963 A



r tOSR-TR- 8 1 -0 798

LEVE V
Prerequisites to Deriving Formal Specifications from

Natural Language Requirements
Final Report*

by

Ralph M. Weischedel

October, 1981

DTIC
ELECT

>1 DEC 161981~

*Research sponsored by the Air Force Office of Scientific

Research, Air Force Systems Command, USAF, under grant no.
AFOSR-80-0190. Th United States Government is authorized
to reproduce and distribute reprints for Governmental' U purposes notwithstanding any copyright notation herein.

hWlOvvd to public release
distribution unlimited,

81 12 14088



.... UNCLAMSIeM - -

SECURITY CLASSIFICATION OF THIS PAGE (When Oat. Entered) I

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSI BEFORE COMPLETING FORM

I. REPORT NUME 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFOSR-TR. R I - 0 798 4i)// y Q/KA
4. TITLE (and Subtitle) S. TYPE OF REPORT I PERIOD COVERED

PREREQUISITES TO DERIVING FORMAL SPECIFICATIONS FINAL 7/1/80-8/31/81
FROM NATURAL LANGUAGE REQUIREMENTS

6. PERFORMING oG. REPORT NUMBER

7. AUTHOR(s) 3. CONTRACT OR GRANT NUMBER(s)

Ralph M. Weischedel .,-AFOSR-80-0190

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJEC7, TASK
AREA A WORK UNIT NUMBERS

Department of Computer & Information Sciences
University of Delaware
Newark, DE 19711 61102F 2304/A2

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/NM October, 1981
Bolling AFB 13. NUMBER OF PAGES

Washington, DC 20332 19
14. MONITORING AGENCY NAME & ADORESS(II different from Controlling Ol l ice) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS. DECL ASSI FICATION/DOWNGRADIN G

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Rport)

Aeamssion rap

Approved for public release, distribution unlimited Is GEAbI

DTIC TAB
Unwwoumeed F1
Just Ifiteat Lto ...

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. It dilterent Iram Report)

D stribut.on/
AvatlabIlity Codes

18. SUPPLEMENTARY NOTES - ttrrlt ' FolM Uv
Dist Special

19. KEY WORDS (Continue on reverse side Ii nocessary and Identify by block number)

formal specifications, English specifications, modules, software design,-
natural language processing, software engineering

/

20. ABSTRACT (Continue on reverse side It necessary end Identity by block number)

ASince English specifications and formal specifications of modules are
complementary and since formal specifications require so much effort to
write, our work is investigating application of artificial intelligence
techniques to aid in the software specification process. ,

The effort for this year involved four areas of work. The firtt is,A\
comparing English descriptions with formal specifications of the same
software module. This work is now complete; however, some of the examples
will continue to serve as a guide to the software tool being constructed.

DD JN 73 1473 EDITION OF ' NOV 6S IS OBSOLETE UNCLASSIFIED .

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

i . ...... . _'~ ~~--T . " ". , ,, _
W I #A-L- . .



UNCLASSIFIED
SECUOiTY CLASSIFICATION OF THIS PAG(Whea Date Entere)

ITEM #20 -CONTINUED :ITM he second area is suggesting modifications to formal specification

languages, which would make them more understandable. In particular, we have
been suggesting alternatives to logical quantifiers.-, This will continue next
year.

-The third and fourth areas deal with the syntactic and semantic components
of an experimental software tool. Its purpose is to test our solutions to a
handful of problems in transforming English descriptions to formal specifica-
tions under significant user assistance. -This work is in progress this year,
but will not be complete until the end " other year's effort.

(-in dealing with syntactic ambiguity, one of the solutions that many have
speculated about is the use of a semantic component to reject anomolous
parses; we intend to test its effectiveness using the RUS gramar. When
ambiguity is not resolved, questions must be presented to the user for his/her
selection of the intended interpretation. Partial heuristics for this are
part of the results of this year's effort. - They will be implemented and
tested during the next year. -°In addition, modification of the RUS parser and
dictionary for the domain of software specification will continue during the
next year. -

Another problem is reflecting the conceptual view of a person in the
semantic component. This must then be translated into the more mathematical
view of present specification languages. On this problem, we have focused on
designing this conceptual view; in the next year we will implement the
translation from it to the mathematical level. A second semantic problem is
anaphora resolution: the heuristics of Sidner (1979) are being modified
for dealing with texts of specifications rather than dialogues (the class of
discurse orwhiE1 they were originally developed). This work will also
continue next year

• . .o . .

UNCLASSIFIED
sEcURItY CLASSIFICATION OF TWO, PAGLWhn Date tt£a va



MIO

n. Organization of the Report

This final report of grant AFOSR-90-0190 is divided into

five sections. Section one gives a brief summary of the motiva-

tion of the effort. Section two reports our progress this year

and briefly proposes the work for the coming year. Section

three summarizes the report. The references are collected in

section four; a list of publications and presentations during

this year's effort appears in section five. Related work is

cited throughout section two; however, a complete discussion of

related work appears in Weischedel (1980) and in the proposal

that resulted in grant AFOSR-80-0190.

1. Motivation of the Work

The technique of formal module specifications seems to

offer much toward alleviating many problems of large software

systems (those systems requiring at least 25 programmers for

development and at least 30,00n lines of source code). The high

cost of software maintenance, the predominance of design errors,

the difficulty in modifying software, and the difficulty and

cost of diagnosing and correcting design errors are some of the

problems addressed by formal specifications based on the

information-hiding principle. Yet, the creating of formal

specifications is very difficult, requiring much upfront effort.

For instance, Parnas (1976, p. 7) states, "Experience has shown

that the effort involved in writing the set of specifications

can be greater than th, effort it would take to write one com-

plete program." It is also generally agreed that formal specifi-

cations are difficult to understand.

Our work, which has been funded by AFOSR under contract



number F49620-79-0131 and grant number AFOSR-l0-0190, has had

both long-term and short-term goals. The long-term objectives

include a preliminary, fundamental study of the problems in-

volved in understanding software system requirements written in

English and transforming them into formal specifications of a

software module. The research is now concentrating on a few of

the basic problems our work has identified and has begun to

develop a small prototype system to test our proposed solutions.

One aspect of our study has been a comparison of English

descriptions and formal specifications of the same software

modules. This has provided a basis for achieving our short-term

goals: suggestions for better documentation and insights into

the reasons that software specifications are difficult to under-

stand.

The motivation of the work is covered at greater length in

the proposal for the grant and the contract mentioned above.

2. Progress and Future Work

The proposal for this present year's effort included four

areas; two in short-term-goals and two in long-term goals.

.1 Short-term Goals

The following two sections deal with the short-term goals:

identifying why formal specifications are so difficult to under-

s:tand, suggesting better documentation techniques, and formulat-

ing an alternative to one difficult mechanism in formal specifi-

cations.

the formal specification of a module must be understandable

if it is fo achieve its purpose, for iu acts as a contract

,w .____.________,_7 "j-i'.



-3-

between designers and programming team, stating exactly what the

programming team's product must do (Parnas, 1977). Unless they

are understandable, 1) programmers will not know what the

module they are to implement is to do nor bow to use other

modules, and 2) designers will not be able to detect design

errors nor easily confirm that their design satisfies user re-

quirements. Also, if one is to use a reference library of for-

mal specifications, they must be understandable, for if the

designer cannot understand the alternative specifications, how

can an intelligent choice be made among the alternatives? If

formal specifications of module interfaces are to become widely

used, they must be understandable.

2.1.1 Comparison of Fnglish descriptions and formal specifica-

tions

In our comparison of specifications in English versus those

in formal languages, we have used examples from Horowitz and

Sahni (1976); all of the examples have been small, typical data

structures. These are representative of the class of problems

that the system described in 2.2 should be able to handle in the

next few years. These examples complement our earlier study of

portions of KSOS (Ford Aerospace, 1979), since KSOS, the kernel

of a secure operating system, is one of the largest systems ever

formally specified.

We have discovered a number of causes for the difficulty in

understanding formal specifications. For instance, one is the

difference between the conceptual view expressed in English and

the mathematical view required in formal specifications. Rather

than viewing a stack as a mathematical entity, such as a finite

& " . . .. . . . . .. .. .i
' ' ' ' '

.... ... " .. . ' - ,-



-4-

sequence, the description in Horowitz and Sahni (1076) takes a

more spatial view by stating (page 77), "A stack is an ordered

list in which all insertions and deletions are made at one end,

called the top. Given a stack S-(al, ... , an) then we say that

al is the bottommost element and element ai is on top of element

ai-1, l~i~n."

In addition, we have several recommendations regarding

better documentation of formal specifications. These, along

with our results on understandability are reported elsewhere

(Weischedel, 1981a and 1981b). This work is complete; however,

the examples from Horowitz and Sahni (176) will continue to

serve as a basis for development of the software tool (see sec-

tion 2.2).

?.1.2 Quantification in formal specifications

The proposal for this year's work identified quantification

in formal logic both as a source of difficulty in understanding

formal specifications and as a mechanism for which an alterna-

tive could be found. Psychological evidence (Johnson-Laird,

1980; Thomas, 19767 Nason and Johnson-Laird, 1972) supports the

ilea that people naturally understand things by means of models

rather than by abstract inferences. These models consist of

sets of objects and the relationships between them. When these

relationships are modelled so as to change through time, the

models serve as simulations. People can then make predictions

by observing what happens in their models. This mode of reason-

ing is more direct and innate than the deductive mode of classi-

cal logic, the mode on which most program specification

languages are based.



Models are uncomplicated representations when compared to

our sophisticated formalisms because in one sense they have no

quantifiers, all their component facts are atomic relations

between individual objects, and the only logical connective is

conjunction. Models may be thought to convey quantified infor-

mation however; to the extent that the objects in them are

representative cases, models are generalizations. We are

developing models that are an alternative to quantification, yet

suitable for specification.

Since generalizations are often stated in English, its

grammar provides for quantification; we are examining some of

those properties as possible modifications to specification

languages. The objects talked about are often indefinite, arbi-

trary or generic; such objects can be conveniently represented

by variables. It is often understood that the identity of some

indefinite objects cannot be determined independent of other

objects; such an object can be represented by Skolem functions,

which explicitly state this dependency. For instance, file

names are such objects in "Every file has a file name". Object

references (noun phrases) are usually dominated by relationships

(verbs) instead of the opposite, which is the case in present

formal specifications. Object references also contain any res-

trictions or presuppositions that may be intended. We suggest

using expressions like

(any X such that X IS-OPEN-FILE) IS-USER-FILE

rather than the more traditional form:

for all X (if IS-OPEN-FILE(X) then IS-USER-FILE(X)).

The alternative we are developing has some problems. The

:1

- -..



-6-

main one is quantifier scope. There are times when a variable,

which is always universally quantified, must be limited in its

scope, as when a general statement is negated or embedded in

another statement. English has some ad hoc limiting devices

which we may adopt. To illustrate just one device, note that

English has several words to indicate universal quantification,

including 'every' and 'any'. These words differ, however, in

that 'every' seems to take minimal scope, while 'any' seems to

take maximal scope. Compare the sentences

a. If any file is open, the user must close it.

b. If every file is open, the user must close it.

The 'it' in b) cannot refer to the files, because the scope of

'every' is restricted to only the condition stated in (b). We

are studying these ad hoc devices to see how they may fit into a

formal language and to see what their limitations are.

A very useful modification we are also investigating would

greatly increase the readability of formal specifications. It

is fairly easy to suggest a syntax which appears like a very res-

tricted subset of English. This makes the language much more

readable. An example is JARGON (Woods, 1979), which has been

suggested as a language for designing semantic networks in ar-

tificial intelligence. The same approach should apply to formal

specification languages.

Though we had originally planned on terminating this work

on alternatives to quantification this year, our progress is

leading to more interesting possibilities than we originally

projected. The potential impact on making formal specifications

more understandable and more easy to write warrants continued

-e



-7-

effort.

2.2 Long-term Goals

The two sections that follow deal with the long-term goals.

In particular, N.eischedel (1990) identifies the form a tool

might have, which, under significant user direction, would

derive formal specifications from English requirements. Though

that work could not project when, if ever, such a tool would

exist for specifying large software systems, it did identify a

few fundamental problems that are prerequisite to such a tool

existing. We are developing a very small prototype tool to test

our hypothesized solutions to those problems.

The structure we have chosen for the prototype tool is

given in Figure 1. All arrows represent data flow.

4

It

.. .



English RUS Conceptual Mathematical Specification

Parser(Specification)
View

Knowledge Knowledge

Dictionary 

BaeBs

Transformation1

English to
Outpu t English

Syntax

SYfSTEM STRUCTURE

Figure I

Wh



Given an English innut, the parser recognizes the syntactic

structure of it. Using a lexicon (a highly formalized diction-

ary), the parser generates a semantic representation for the

input. Since the syntax of English is highly ambiguous, the

parser interacts with the knowledge base in the "conceptual

view" as a means of using factual knowledge to reduce the number

of semantically senseless parses tried by the parser. The

parser and dictionary constitute the syntactic component of the

system.

In section 2.1.1 we argueO that the level at which people

conceive of a module is often quite different than the mathemat-

ical level that specification languages presume. This is re-

flected in the system by having two distinct views: a conceptu-

al one using terms close to that of the human specifier and a

mathematical one close to that of specification languages. At

both levels, basic facts and rules of inference will have to be

stored in order to reason about the semantic representation that

is being constructed from the user's description of the module.

These facts and rules of inference are called a knowledge base.

The transformation from the conceptual view to the

mathematical one will probabiy use techniques similar to Barstow

(1977). It is the transformation between the two views that

will detect some of the missing information in the user's

specification. Questions eliciting the missing information must

be generated using the coneptual view since that is the level

using terms closest to the user's. A simple state-of-the-art

output component can transform the notation of the conceptual

level to English for asking questions and explaining the

t~~~



-10-

system's interpretation of the input. The two views constitute

the semantic component of the system.

2.2.1 Syntax

For the syntactic component of the prototype software tool

we are developing, we are using RUS (Bobrow, 1978), a grammar of

English which calls a semantic component while parsing in order

to cut down on semantically anomolous parses. Since it is a

general grammar of English, some extensions must be made to

understand expressions that are natural in software specifica-

tion though not in everyday language. The simple mathematical

notation in the quote in section 2.1.1 is an example. Addition-

ally, a dictionary for terms commonly used in software specifi-

cation is under construction for use with the grammar. For

instance, the use of 'say' in "We say that a stack is ..." is

rather stylized in software specifications as a way of defining

a term. Work on the dictionary and the parser will continue

next year.

In addition to modifying the parser and developing a dic-

tionary, this year's work included postulating heuristics for

generating clarifying questions when the system cannot resolve

ambiguity. Weischedel (1980) identified several difficult

classes of ambiguity that occur in software specifications. One

is prepositional phrase attachment. The paradigmatic example of

this in the literature is "I saw the man in the park with a

telescope." There are a significant number of cases where a

system could not resolve such ambiguity, but must instead ask

the user which interpretation is intended. Clearly, two things

are needed: a means of detecting that two interpretations are



]- -11-

present and a technique of precisely stating the alternative

interpretations. (If the statements given to the user for

his/her selection are ambiguous, this only compounds the prob-

lem.)

We have found the cleft construction in English plus front-

ed adverbials to be a promising way of distinguishing the alter-

natives. For the example above, the various interpretations are

1. It was the man in the park having a telescope that I saw.

2. Using a telescope it was the man in the park that I saw.

3. It was in the park that I saw the man having a telescope.

4. It was in the park and using a telescope that I saw the

man.

We will continue to study the potential of this technique by

implementing the heuristics next year.

2.2.2 Semantics

The proposal that funded this year's effort identified the

need to have a knowledge representation intermediate in level

between the informal English description and the formal (and

rather mathematical) specification. Additional support for this

is the observation in section 2.1.1 above that the human's con-

ceptual view of the module being defined can be quite different

than the formal specification. Mirroring the human's conceptual

view as one semantic level will provide the right level for

phrasing questions put to the user to fill in missing detail and

for phrasing the system's understanding of the English input.

Much of our effort in semantics has been designing the

knowledge representation for those two levels. Both levels will

* be expressed in first-order logic or its variations; however,

- 1*~* :



~-12-

the terms (i.e. predicates, constants, functions) will be quite

different at each level.

As an example, consider the following definition of an

insertion operation for ordered lists, as given on page 42 of

Horowitz and Sahni (1976):

"insert a new element at position i, 1<i<n+l causing elements

numbered i,i+l,...,n to become numbered i+l,i+2,...,n+l".

A formal logic expression capturing its semantics using terms

close to the person's view follows in a:

a: (FORALL y6: LAMBDA(y7:element).new(y7)).
cause[insert-at(UNKNOWN,y6, iz6:(position(z6) &

z6-i & lcmi
& i<(n+l)),

(FORALL w IN !i ... n1l.
become (i wl:(element~wll & numbered(wl,w)),

numbered(wlw+l))]

Though the details are unimportant, it should be noted that it

uses terms such as 'position' that are very close to English

words (and the associated concepts). On the other hand, at the

mathematical level, formula b is appropriate and is semantically

very close to a formal specification language such as SPECIAL

(Roubine and Robinson, 1976).

b: (LAMBDA x: ordered-list(x),p: timeinterval(p),e,
i: l<i & i< length(x, begin(p))+1)

rep(x, end(p))-i f: finite-seq(x) &
(FORALL j: 1<-j & j<- length(xbegin(p))+l)
£(J<i -> f(j)-rep(x,begin(p))(j)) &

f(i)=e &
(j>i -> f(j)-rep(x,begin(p))(j-l))

We will continue the design of these two levels of

representation during the next year. In addition, the mapping

from the conceptual view to the mathematical view will be imple-

mented.

9,.



-13-

In addition to the semantic analysis discussed above, a

separate problem in semantics is being studied. Determining

what a pronoun or noun phrase refers to has been a topic of much

intereb' recently in artificial intelligence; it is called de-

finite anaphora resolution. Sidner (1979) presents a heuristic

for detecting clues in dialogue for the focus of attention, and

explains how that can be used for determining reference. The

consultant on this grant has been modifying this heuristic for

texts of English specifications rather than dialogue; see Joshi

and Weinstein (1991). In doing this, he has found that Sidner's

notion of focus is inadequate. Rather, two objects seem to

serve as centers of attention. A backward center serves as a

locus in a single sentence and corresponds to previous objects

in the text. A forward center serves as a focus for later

references and introduces new objects. In the sentence

"Processes must execute in a single fork", "processes" serves as

the backward center, and "a single fork" is the forward center.

Furthermore, he is postulating heuristics for detecting centers

based on the structure of a sentence recognized by a parser. A

practical application we expect from this is an additional cri-

terion for determining whether an English specification is

well-organized and well-written based on its anaphoric refer-

ences. This study will continue next year using English specif-

ications from PSOS (a provably secure operating system) (Neuman,

* et al., 1977) and from Horowitz and Sahni (1976).

3. Conclusions

The effort for this year involved four areas of work. The
first is comparing English descriptions with formal



-14-

specifications of the same software module. This work is now

complete; however, some of the examples will continue to serve

as a guide to the software tool being constructed.

The second area is suggesting modifications to formal

specification languages, which would make them more understand-

able. In particular, we have been suggesting alternatives to

logical quantifiers. This will continue next year.

The third and fourth areas deal with the syntactic and

semantic components of an experimental software tool. Its pur-

pose is to test our solutions to a handful of problems in

transforming English descriptions to formal specifications under

significant user assistance. This work is in progress this

year, but will not be complete until the end of another year's

effort.

In dealing with syntactic ambiguity, one of the solutions

that many have speculated about is the use of a semantic com-

ponent to reject anomolous parses; we intend to test its effec-

tiveness using the RUS grammar. When ambiguity is not resolved,

questions must be presented to the user for his/her selection of

the intended interpretation. Partial heuristics for this are

part of the results of this year's effort. They will be imple-

mented and tested during the next year. In addition, modifica-

tion of the RUS parser and dictionary for the domain of software

specification will continue during the next year.

Another problem is reflecting the conceptual view of a per-

son in the semantic component. This must then be translated

into the more mathematical view of present specification

languages. On this problem, we have focused on designing this

W -



-15-

conceptual view; in the next year we will implement the transla-

tion from it to the mathematical level. A second semantic prob-

lem is anaphora resolution; the heuristics of Sidner (1979) are

being modified for dealing with texts of specifications rather

than dialogues (the class of discourse for which they were ori-

ginally developed). This work will also continue next year.

-...- _- o . , .



-16-

4. References

Barstow, David. "A Knowledge-based System for Automatic Program
Construction", Proceedings of IJCAI-77, 1977, 392-388.

Bobrow, R., "The RUS System", in Research in Natural Language

Understanding, by B. Webber and R. Bobrow, BSN Report No. 3878,
Bolt Beranek and Newman, Inc., Cambridge, MA, 1979.

Ford Aerospace, "Secure Minicomputer Operating System (KSOS):
Computer Program Development Specifications (Type B-5)," Tech.
Report No. WDL-TR7932, Ford Aerospace & Communications Corpora-
tion, Palo Alto, CA, 1978.

Horowitz, Ellis and Sartaj Sahni, Fundamentals of Data
Structures, Computer Science Press, Inc., Woodland Hills, CA,
1976.

Johnson-Laird, P. N. "Mental Models in Cognitive Science",
Cognitive Science, 4, No. 1, 1980, 71-115.

Joshi, Aravind K. and Scott Weinstein. "Control of Inference:
Role of Some Aspects of Discourse Structure - Centering".
Proceedings of the Seventh International Joint Conference on
Artificial Intelligence, American Association for Artificial
Intelligence, Mento Park, CA, 1981, 385-387.

Neumann, Peter G., Robert S. Bover, Richard T. reiertag, Karl N.
Levitt, and Lawrence Robinson, "A Provably Secure Operating Sys-
tem: The System, Its Applications, and Proofs," SRI Project
4332, Final Report, Stanford Research Institute, Itenlo Park, CA,
1977.

Parnas, D. L., "On the Design and Development of Program Fami-
lies," IEEE Transactions on Software Engineering, SE-2, No. 1,
March, 1976, 1-§.

Parnas, David L., "The Use of Precise Specifications in the
Development of Software," Information Processing 77, B. Gil-
christ, (ed.), North-Holland Publishing Company, New York, 1977.

Roubine, Olivier and Lawrence Robinson, "SPECIAL Reference Manu-
al", Technical Report CSG-45, Stanford Research Institute, Menlo
Park, CA, August, 1976.

Sidner, Candace Lee, "Towards a Computational Theory of Definite
Anaphora Comprehension in English Discourse," AI-TR 537, Artifi-
cial Intelligence Laboratory, Massachusetts Institute of Tech-
nology, Cambridge, MA, 1979.

Thomas, John C. "Quantifiers and Question-hsking," RC 5866
($25388) IBM Thomas J. Watson Research Center, Yorktown Heights,
MY, 1976.

Wason, P. C. and P. N. Johnson-Laird. Psychology of Reasoning:
Structure and Content, Cambridge, MA: Harvara univs WPrsu,

9 - 9 . * , '*.



-17-

1972.

Weischedel, Ralph M. "Prerequisites to Deriving Formal Specifi-
cations from Natural Language Requirements: Final Report",
Dept. of Computer & Information Sciences, University of De-
laware, Newark, DE, 1990.

Weischedel, Ralph M. "Reducing the Effort in Creating Formal
Specifcations of Software Modules," Proceedings of the
Conference on Information Sciences and Systems, Johns fopkins
University, Baltimore, MD, March 26-28 , 1981a, 86-90.

Weischedel, Ralph M. "Practical Issues in having a usable Li-
brary of Software Specifications", Department of Computer &I;
Information Sciences, University of Delaware, Newark, DE, 1981b.

Woods, William A. "Theoretical Studies in Natural Language
Understanding: Annual Report, 1 May 1978 - 30 April 1979", BBN
Report #4332, Bolt Beranek and Newman, Cambridge MA, 1979.



-18-

S. List of Presentations and Reports Generated this Year

Joshi, Aravind K. and Scott Weinstein. "Control of Inference:
Role of Some Aspects of Discourse Structure - Centering".
Proceedings of the Seventh International Joint Conference on
Artificial Intelligence, American Association for Artificial
Intelligence, Menlo Park, CA, 1981, 385-387.

Weischedel, Ralph M. "The Problem with Software Specifications
& Two Emerging Solutions", Presented to the Computer Science
Research Group, Ford Aerospace & Communications Corporation,
Palo Alto, CA, August, 1980.

Weischedel, Ralph M. "Two Possible Uses", First KL-one
Workshop, Jackson, NK, October 15-17, 1981. (Oral presentation
only; no proceedings was published.)

Weischedel, Ralph M. "Reducing the Effort in Creating Formal
Specifcations of Software Modules," Proceedings of the
Conference on Informa?4on Sciences and Systems, Johns-Hopk ns
University, Baltimore, VED, MArch 26-28, 1981, 86-90.

Weischedel, Ralph M. P-&ctical Issues in having a usable Li-
brary of Software Specifications", Department of Computer &
Information Sciences, University of Delaware, Newark, DE 1981b.

Additionally, Ralph M. Weischedel was a participant in the Sub-
languages Panel of the Applied Computational Linguistics in Per-
spective Workshop, June 26-27, 1981. The workshop was sponsored
by the Office of Naval Research and the National Science Founda-
tion. His experience in the style of English in software
specifications was presented there. An overview of the workshop
as a whole is to be submitted to the American Journal of
Computational Linguistics by the workshop organizer Carroll
Johnson.

~1 - ._UP



DATE

FILME


